Top-level functions¶
These are functions that are available directly in the top level of
the quaternion
module.
rotate_vectors(R, v, axis=-1)
¶
Rotate vectors by given quaternions
This function is for the case where each quaternion (possibly the only input quaternion) is used to rotate multiple vectors. If each quaternion is only rotating a single vector, it is more efficient to use the standard formula
vprime = R * v * R.conjugate()
(Note that from_vector_part
and as_vector_part
may be helpful.)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
R
|
quaternion array
|
Quaternions by which to rotate the input vectors |
required |
v
|
float array
|
Three-vectors to be rotated. |
required |
axis
|
int
|
Axis of the |
-1
|
Returns:
Name | Type | Description |
---|---|---|
vprime |
float array
|
The rotated vectors. This array has shape R.shape+v.shape. |
Notes
For simplicity, this function converts the input quaternion(s) to matrix form, and rotates the input vector(s) by the usual matrix multiplication. As noted above, if each input quaternion is only used to rotate a single vector, this is not the most efficient approach. The simple formula shown above is faster than this function, though it should be noted that the most efficient approach (in terms of operation counts) is to use the formula
v' = v + 2 * r x (s * v + r x v) / m
where x represents the cross product, s and r are the scalar and vector parts of the quaternion, respectively, and m is the sum of the squares of the components of the quaternion. If you are looping over a very large number of quaternions, and just rotating a single vector each time, you might want to implement that alternative algorithm using numba (or something that doesn't use python).
Source code in quaternion/__init__.py
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
|
as_quat_array(a)
¶
View a float array as an array of quaternions
The input array must have a final dimension whose size is
divisible by four (or better yet is 4), because successive
indices in that last dimension will be considered successive
components of the output quaternion. Each set of 4 components
will be interpreted as the scalar and vector components of a
quaternion in that order: w
, x
, y
, z
.
This function is usually fast (of order 1 microsecond) because no data is copied; the returned quantity is just a "view" of the original. However, if the input array is not C-contiguous (basically, as you increment the index into the last dimension of the array, you just move to the neighboring float in memory), the data will need to be copied which may be quite slow. Therefore, you should try to ensure that the input array is in that order. Slices and transpositions will frequently break that rule.
We will not convert back from a two-spinor array because there is no unique convention for them, so I don't want to mess with that. Also, we want to discourage users from the slow, memory-copying process of swapping columns required for useful definitions of the two-spinors.
Source code in quaternion/__init__.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
from_float_array(a)
¶
Source code in quaternion/__init__.py
131 132 |
|
as_float_array(a)
¶
View the quaternion array as an array of floats
This function is fast (of order 1 microsecond) because no data is copied; the returned quantity is just a "view" of the original.
The output view has one more dimension (of size 4) than the input
array, but is otherwise the same shape. The components along
that last dimension represent the scalar and vector components of
each quaternion in that order: w
, x
, y
, z
.
Source code in quaternion/__init__.py
64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
from_vector_part(v, vector_axis=-1)
¶
Create a quaternion array from an array of the vector parts.
Essentially, this just inserts a 0 in front of each vector part, and re-interprets the result as a quaternion.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v
|
array_like
|
Array of vector parts of quaternions. When interpreted as a numpy array,
if the dtype is |
required |
vector_axis
|
int
|
The axis to interpret as containing the vector components. The default is -1. |
-1
|
Returns:
Name | Type | Description |
---|---|---|
q |
array of quaternions
|
Quaternions with vector parts corresponding to input vectors. |
Source code in quaternion/__init__.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
as_vector_part(q)
¶
Create an array of vector parts from an array of quaternions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q
|
quaternion array_like
|
Array of quaternions. |
required |
Returns:
Name | Type | Description |
---|---|---|
v |
array
|
Float array of shape |
Source code in quaternion/__init__.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
from_rotation_matrix(rot, nonorthogonal=True)
¶
Convert input 3x3 rotation matrix to unit quaternion
For any orthogonal matrix rot
, this function returns a quaternion q
such
that, for every pure-vector quaternion v
, we have
q * v * q.conjugate() == rot @ v.vec
Here, @
is the standard python matrix multiplication operator and v.vec
is
the 3-vector part of the quaternion v
. If rot
is not orthogonal the
"closest" orthogonal matrix is used; see Notes below.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rot
|
(..., N, 3, 3) float array
|
Each 3x3 matrix represents a rotation by multiplying (from the left) a column vector to produce a rotated column vector. Note that this input may actually have ndims>3; it is just assumed that the last two dimensions have size 3, representing the matrix. |
required |
nonorthogonal
|
bool
|
If scipy.linalg is available, use the more robust algorithm of Bar-Itzhack. Default value is True. |
True
|
Returns:
Name | Type | Description |
---|---|---|
q |
array of quaternions
|
Unit quaternions resulting in rotations corresponding to input rotations. Output shape is rot.shape[:-2]. |
Raises:
Type | Description |
---|---|
LinAlgError
|
If any of the eigenvalue solutions does not converge |
Notes
By default, if scipy.linalg is available, this function uses Bar-Itzhack's algorithm to allow for non-orthogonal matrices. [J. Guidance, Vol. 23, No. 6, p. 1085 http://dx.doi.org/10.2514/2.4654] This will almost certainly be quite a bit slower than simpler versions, though it will be more robust to numerical errors in the rotation matrix. Also note that Bar-Itzhack uses some pretty weird conventions. The last component of the quaternion appears to represent the scalar, and the quaternion itself is conjugated relative to the convention used throughout this module.
If scipy.linalg is not available or if the optional nonorthogonal
parameter
is set to False
, this function falls back to the possibly faster, but less
robust, algorithm of Markley [J. Guidance, Vol. 31, No. 2, p. 440
http://dx.doi.org/10.2514/1.31730].
Source code in quaternion/__init__.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
|
as_rotation_matrix(q)
¶
Convert input quaternion to 3x3 rotation matrix
For any quaternion q
, this function returns a matrix m
such that, for every
vector v
, we have
m @ v.vec == q * v * q.conjugate()
Here, @
is the standard python matrix multiplication operator and v.vec
is
the 3-vector part of the quaternion v
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q
|
quaternion or array of quaternions
|
The quaternion(s) need not be normalized, but must all be nonzero |
required |
Returns:
Name | Type | Description |
---|---|---|
m |
float array
|
Output shape is q.shape+(3,3). This matrix should multiply (from the left) a column vector to produce the rotated column vector. |
Raises:
Type | Description |
---|---|
ZeroDivisionError
|
If any of the input quaternions have norm 0.0. |
Source code in quaternion/__init__.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
from_rotation_vector(rot)
¶
Convert input 3-vector in axis-angle representation to unit quaternion
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rot
|
(Nx3) float array
|
Each vector represents the axis of the rotation, with norm proportional to the angle of the rotation in radians. |
required |
Returns:
Name | Type | Description |
---|---|---|
q |
array of quaternions
|
Unit quaternions resulting in rotations corresponding to input rotations. Output shape is rot.shape[:-1]. |
Source code in quaternion/__init__.py
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
|
as_rotation_vector(q)
¶
Convert input quaternion to the axis-angle representation
Note that if any of the input quaternions has norm zero, no error is raised, but NaNs will appear in the output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q
|
quaternion or array of quaternions
|
The quaternion(s) need not be normalized, but must all be nonzero |
required |
Returns:
Name | Type | Description |
---|---|---|
rot |
float array
|
Output shape is q.shape+(3,). Each vector represents the axis of the rotation, with norm proportional to the angle of the rotation in radians. |
Source code in quaternion/__init__.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
|
from_euler_angles(alpha_beta_gamma, beta=None, gamma=None)
¶
Improve your life drastically
Assumes the Euler angles correspond to the quaternion R via
R = exp(alpha*z/2) * exp(beta*y/2) * exp(gamma*z/2)
The angles naturally must be in radians for this to make any sense.
NOTE: Before opening an issue reporting something "wrong" with this function, be sure to read all of the following page, especially the very last section about opening issues or pull requests. https://github.com/moble/quaternion/wiki/Euler-angles-are-horrible
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha_beta_gamma
|
float or array of floats
|
This argument may either contain an array with last dimension of size 3, where those three elements describe the (alpha, beta, gamma) radian values for each rotation; or it may contain just the alpha values, in which case the next two arguments must also be given. |
required |
beta
|
None, float, or array of floats
|
If this array is given, it must be able to broadcast against the first and third arguments. |
None
|
gamma
|
None, float, or array of floats
|
If this array is given, it must be able to broadcast against the first and second arguments. |
None
|
Returns:
Name | Type | Description |
---|---|---|
R |
quaternion array
|
The shape of this array will be the same as the input, except that the last dimension will be removed. |
Source code in quaternion/__init__.py
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
|
as_euler_angles(q)
¶
Open Pandora's Box
If somebody is trying to make you use Euler angles, tell them no, and walk away, and go and tell your mum.
You don't want to use Euler angles. They are awful. Stay away. It's one thing to convert from Euler angles to quaternions; at least you're moving in the right direction. But to go the other way?! It's just not right.
Assumes the Euler angles correspond to the quaternion R via
R = exp(alpha*z/2) * exp(beta*y/2) * exp(gamma*z/2)
The angles are naturally in radians.
NOTE: Before opening an issue reporting something "wrong" with this function, be sure to read all of the following page, especially the very last section about opening issues or pull requests. https://github.com/moble/quaternion/wiki/Euler-angles-are-horrible
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q
|
quaternion or array of quaternions
|
The quaternion(s) need not be normalized, but must all be nonzero |
required |
Returns:
Name | Type | Description |
---|---|---|
alpha_beta_gamma |
float array
|
Output shape is q.shape+(3,). These represent the angles (alpha,
beta, gamma) in radians, where the normalized input quaternion
represents |
Raises:
Type | Description |
---|---|
AllHell
|
...if you try to actually use Euler angles, when you could have been using quaternions like a sensible person. |
Source code in quaternion/__init__.py
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
|
from_spherical_coords(theta_phi, phi=None)
¶
Return the quaternion corresponding to these spherical coordinates
Assumes the spherical coordinates correspond to the quaternion R via
R = exp(phi*z/2) * exp(theta*y/2)
The angles naturally must be in radians for this to make any sense.
Note that this quaternion rotates z
onto the point with the given
spherical coordinates, but also rotates x
and y
onto the usual basis
vectors (theta and phi, respectively) at that point.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
theta_phi
|
float or array of floats
|
This argument may either contain an array with last dimension of size 2, where those two elements describe the (theta, phi) values in radians for each point; or it may contain just the theta values in radians, in which case the next argument must also be given. |
required |
phi
|
None, float, or array of floats
|
If this array is given, it must be able to broadcast against the first argument. |
None
|
Returns:
Name | Type | Description |
---|---|---|
R |
quaternion array
|
If the second argument is not given to this function, the shape will be the same as the input shape except for the last dimension, which will be removed. If the second argument is given, this output array will have the shape resulting from broadcasting the two input arrays against each other. |
Source code in quaternion/__init__.py
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
|
as_spherical_coords(q)
¶
Return the spherical coordinates corresponding to this quaternion
Obviously, spherical coordinates do not contain as much information as a quaternion, so this function does lose some information. However, the returned spherical coordinates will represent the point(s) on the sphere to which the input quaternion(s) rotate the z axis.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q
|
quaternion or array of quaternions
|
The quaternion(s) need not be normalized, but must be nonzero |
required |
Returns:
Name | Type | Description |
---|---|---|
vartheta_varphi |
float array
|
Output shape is q.shape+(2,). These represent the angles (vartheta,
varphi) in radians, where the normalized input quaternion represents
|
Source code in quaternion/__init__.py
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
|
as_spinor_array(a)
¶
View a quaternion array as spinors in two-complex representation
This function is relatively slow and scales poorly, because memory copying is apparently involved -- I think it's due to the "advanced indexing" required to swap the columns.
Source code in quaternion/__init__.py
195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
isclose(a, b, rtol=4 * np.finfo(float).eps, atol=0.0, equal_nan=False)
¶
Returns a boolean array where two arrays are element-wise equal within a tolerance.
This function is essentially a clone of the numpy.isclose
function,
with different default tolerances and minor changes necessary to deal
correctly with quaternions.
The tolerance values are positive, typically very small numbers. The
relative difference (rtol
* abs(b
)) and the absolute difference
atol
are added together to compare against the absolute difference
between a
and b
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a
|
array_like
|
Input arrays to compare. |
required |
b
|
array_like
|
Input arrays to compare. |
required |
rtol
|
float
|
The relative tolerance parameter (see Notes). |
4 * eps
|
atol
|
float
|
The absolute tolerance parameter (see Notes). |
0.0
|
equal_nan
|
bool
|
Whether to compare NaN's as equal. If True, NaN's in |
False
|
Returns:
Name | Type | Description |
---|---|---|
y |
array_like
|
Returns a boolean array of where |
See Also
allclose
Notes
For finite values, isclose uses the following equation to test whether two floating point values are equivalent:
absolute(a
- b
) <= (atol
+ rtol
* absolute(b
))
The above equation is not symmetric in a
and b
, so that
isclose(a, b)
might be different from isclose(b, a)
in
some rare cases.
Examples:
>>> quaternion.isclose([1e10*quaternion.x, 1e-7*quaternion.y], [1.00001e10*quaternion.x, 1e-8*quaternion.y],
... rtol=1.e-5, atol=1.e-8)
array([True, False])
>>> quaternion.isclose([1e10*quaternion.x, 1e-8*quaternion.y], [1.00001e10*quaternion.x, 1e-9*quaternion.y],
... rtol=1.e-5, atol=1.e-8)
array([True, True])
>>> quaternion.isclose([1e10*quaternion.x, 1e-8*quaternion.y], [1.0001e10*quaternion.x, 1e-9*quaternion.y],
... rtol=1.e-5, atol=1.e-8)
array([False, True])
>>> quaternion.isclose([quaternion.x, np.nan*quaternion.y], [quaternion.x, np.nan*quaternion.y])
array([True, False])
>>> quaternion.isclose([quaternion.x, np.nan*quaternion.y], [quaternion.x, np.nan*quaternion.y], equal_nan=True)
array([True, True])
Source code in quaternion/__init__.py
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 |
|
allclose(a, b, rtol=4 * np.finfo(float).eps, atol=0.0, equal_nan=False, verbose=False)
¶
Returns True if two arrays are element-wise equal within a tolerance.
This function is essentially a wrapper for the quaternion.isclose
function, but returns a single boolean value of True if all elements
of the output from quaternion.isclose
are True, and False otherwise.
This function also adds the option.
Note that this function has stricter tolerances than the
numpy.allclose
function, as well as the additional verbose
option.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a
|
array_like
|
Input arrays to compare. |
required |
b
|
array_like
|
Input arrays to compare. |
required |
rtol
|
float
|
The relative tolerance parameter (see Notes). |
4 * eps
|
atol
|
float
|
The absolute tolerance parameter (see Notes). |
0.0
|
equal_nan
|
bool
|
Whether to compare NaN's as equal. If True, NaN's in |
False
|
verbose
|
bool
|
If the return value is False, all the non-close values are printed, iterating through the non-close indices in order, displaying the array values along with the index, with a separate line for each pair of values. |
False
|
See Also
isclose, numpy.all, numpy.any, numpy.allclose
Returns:
Name | Type | Description |
---|---|---|
allclose |
bool
|
Returns True if the two arrays are equal within the given tolerance; False otherwise. |
Notes
If the following equation is element-wise True, then allclose returns True.
absolute(a
- b
) <= (atol
+ rtol
* absolute(b
))
The above equation is not symmetric in a
and b
, so that
allclose(a, b)
might be different from allclose(b, a)
in
some rare cases.
Source code in quaternion/__init__.py
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 |
|